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Double boundary layers on an electrically conducting 
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A class of nonlinear boundary layers in a hydromagnetic flow under differential 
rotation is analysed. The function of these layers is to provide smooth transition from 
the conditions within the electrically conducting container to those in the region far 
away from the boundary through the flow regime. The structure of the double-decker 
boundary layer depends on the diffusivity of the fluid, the conductance of the rigid 
boundary and the relative strength of the applied magnetic field. The method of 
multiple scales is used to obtain uniformly valid solutions with the conductance of 
the container varying from zero to infinity. It is found that even a small differential 
rotation ( e - f O )  can induce perturbations of order st or of order unity in the field 
functions. 

1. Introduction 
During the past few years there has developed a great deal of interest in the study 

of hydromagnetics of rotating fluids. This interest is motivated partly by its possible 
application to situations of geophysical and astrophysical interest and partly by the 
desire to gain understanding of the fluid behaviour for various conditions and con- 
figurations. 

It is well known that the Ekman boundary layer can induce an axial flow of fluid, 
called the Ekman suction or Ekman pumping. This in turn drives a meridional 
circulation. The influence of an axial magnetic field on the Ekman layer was studied 
originally by Gilman & Benton (1968) and more recently by Chawla (1976). It was 
revealed by these analyses that the hydromagnetic forces act in concert with the 
Ekman pumping to control the interior of the rotating fluid. These hydromagnetic 
forces are generated by a meridional circulation of electric current between different 
regions of fluid flow. This circulation of current is mainly responsible for the establish- 
ment of the magnetic diffusion region outside the Ekman-Hartmann layer. 

In  the case in which the fluid rotates in contact with an electrically conducting 
container, the electric current leaks out of the fluid into the conducting boundary. 
For a sufficiently high conductance of the container surface, the evolution of the double- 
decker hydromagnetic boundary layer is brought about not by viscous stresses but by 
electromagnetic coupling. The overall effect of the relative strength of the applied 
magnetic field on hydromagnetic flow in contact with a differentially rotating insul- 
ating boundary was considered by Chawla (1976). The specific purpose of the present 
paper is to investigate how the electrical conductivity of the container controls the 
structure of the nonlinear hydromagnetic boundary layers. A linear analysis was 
given by Loper (1970). This, however, precludes the discussion of the outer magnetic 
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diffusion region. But the dynamics of the outer region are crucial for determining the 
true character of the hydromagnetic coupling. I n  this context, the strength of the 
coupling between the interior flow and the boundary is determined not by the ratio 
of the boundary conductivity to that of the fluid, but rather by the ratio of the 
boundary conductance to that of the fluid in one Ekman (or magnetic Ekman) depth. 
The intensity of hydromagnetic coupling afforded by the conductance of the container 
is measured by the azimuthal (toroidal) magnetic field perturbation at the interface. 

Bullard (1950) has suggested that for the interior of the earth electromagnetic 
coupling is probably more important than the viscous stresses. An additional motiva- 
tion for the present analysis stems from this suggestion. The electromagnetic coupling 
gives rise to  the possibility of attributing the irregular changes in the length of a day 
to the rotational momentum transfer between the core and the mantle of the earth. 
The dynamical response of the mantle to  the changing internal magnetic field of the 
earth is determined by the core-mantle boundary value of this field. The boundary 
values of the field are affected by the distribution of electrical conductivity in the 
overlying mantle. 

2. The mathematical formulation 
We consider the situation in which a homogeneous fluid of constant viscosity Y 

and magnetic diffusivity 1;1 fills the half-space Z > 0,  while the lower half-space 
Z < 0 is occupied by a rigid electrically conducting container. The container is rotating 
with constant angular velocity !2( 1 + c) (0 < e < l), whereas the fluid a t  infinity is in 
a state of rigid-body rotation of angular velocity 0 in the same sense. A uniform 
magnetic field of strength H, is applied in the far field and is constrained t o  be in the 
axial direction a t  large distances from the interface. Following Loper (1970), we 
assume the electrical conductivity of the container to  be a non-negative function of 
distance from the interface Z = 0 subject to  the condition that, if the conductivity 
is zero at  a finite distance from 2 = 0 ,  i t  must be so a t  all greater distances. We shall, 
however, relax the second condition imposed by Loper (19701, which requires the 
conductance of the container to be finite. We propose to derive uniformly valid 
solutions of the physical problem for all values of the conductance from zero (insulating 
boundary) to infinity (perfectly conducting boundary). 

The steady equations governing the fluid velocity V, the magnetic field H and the 
hydromagnetic pressure p, written in a n  inertial frame, are 

V .  (+V.  V) + (V x V) x V = -p-lVp- YV x (V x V ) +  (pulp) (V xH)  x H ,  (2.1) 

V X ( V X H )  =1;1Vx(VxH), (2.2) 

v .v  = 0, v .  H = 0, (2.3) 

where p is the density and p is the magnetic permeability of the fluid. The equations 
governing the steady magnetic field within the solid are 

pg, V x (V, x H,) + Vg, x (V x H,) = V x (V x H,), (2.4) 

V.H, = 0, (2.5) 

where a,(z) is the electrical conductivity at any point and V, is the azimuthal velocity 
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of the rotating solid. Moreover, we take the magnetic permeabilities of the solid and 
the fluid to be the same. 

In  cylindrical polar co-ordinates (r,  8, Z )  the appropriate boundary conditions are 

V.F-+O, V , 6 + r Q ,  H-+Ho& as Z+a, ( 2 . 6 ~ )  

V = r s t ( l + s ) 8 ,  H = H , ,  (crPVxH).(F,6)= (arVxH,).(F,6) on Z=O, (2.6b) 

H,.P-+O, H,.6+O as Z-f-m, ( 2 . 6 ~ )  

where crf is the electrical conductivity of the fluid and F, 6 and 2 are unit vectors in 
the r,  8 and Z directions respectively. The conditions (2.6b) are necessary for the 
continuity of the magnetic field and the tangential components of the electric field 
across the fluid-solid interface. The conditions (2 .6a,  c ) ,  on the other hand, provide 
the proper balance in the far field. 

For consistency with the axial symmetry and the continuity equations, we define 

V = rst[<F+ ( 1  + G )  61 - 2(vQ)*F$, (2.7) 

(2.10) 

where F ,  G ,  M ,  N and P are functions of the dimensionless variable z = (Q/v)*Z,  and 
ii? and are functions of the dimensionless variable 6 = Z/L .  Here L is the thickness 
of a slab of constant electrical conductivity cr,(O) whose conductance equals that of 
the actual conducting boundary, i.e. 

(2.11) 

We substitute (2.7)-(2.10) in (2 ,1) ,  (2.2) and (2 .4)  and get 

F,,, + 2G - 2hN,, = FE - 2FF,, - G2 - 2 h ~ ( N z  - 2NNZz- M'), (2.12) 

G,, - 2F, - 2hM, = 2(GFz - FG,) - 4ha(MN, - NM,), (2.13) 

Mz,-Gz = 2a(NG,-FM,),  (2.14) 

NZz - F, = 2a(NF, - FN,), (2.16) 

0, = opt Bt, Nst = 0, (2.16) 

where h and cr are dimensionless parameters defined by 

h = pH,2/2p7Q, c = v/7. (2.17) 

Here r is the magnetic Prandtl number and h measures the strength of the magnetic 
force relative to the centrifugal force. In terms of M and N ,  the current density vector 
is 

J = (Ho/7) [ r ~ M , F - r ~ 2 N , ~ - 2 ( v R ) a M ~ ] .  (2.18) 
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The magnetic field within the body of the container satisfies (2.16) and is given by 

(2.19) 

Consistent with (2.7)) (2.8) and (2.19), the boundary conditions (2.6) on the velocity 
and magnetic fields within the fluid are transformed into 

e(0) = 0, F(0) = 0, G(0) = E ,  F(w) = 0 = G(co), (2.20a) 

Nz(0) = 0, #M,(O) = M(O), M(oo) = 0 = N(co), (2.20b) 
where 

(2.21) 

For an insulating boundary # = 0, whereas for a perfectly conducting container 
# = OO. The analysis of Loper (1970) implies that M(co), N,(co) 4 0. This leaves un- 
balanced terms in (2.12)) (2.13) and (2.15). 

In this paper we are concerned with very small differential rotation (c-+ 0). If we 
attempt a solution of the set of equations (2.12)-(2.15) by writing down Taylor-series 
expansions for F ,  G, M and N in powers of E ,  powers of z appear in the analysis of 
higher perturbations. Thus, while such a solution satisfies all the boundary conditions 
on z = 0 ,  it  fails to satisfy those in the far field. In  order to avoid such difficulties of 
the singular expansion, we introduce two length scales at  the outset. Such a procedure 
is effective, though complicated, primarily because the hydromagnetic flow under 
consideration has a distinct double-layered structure. The introduction of the 
additional length scale also provides a complete interaction between the two regions 
of fluid flow. In the nonlinear treatment, the scaling and the exact form of different 
hydromagnetic layers depend critically on the order of magnitude of 9. 

3. Solution when q5 = O(1) 

It follows from the analysis of Chawla (1976) that, for an insulating container, the 
outer layer is O(E-1) times as thick as the inner boundary layer. It is therefore appro- 
priate to introduce < = EZ as the additional independent variable. At each stage, the 
< dependence of the field functions is chosen to suppress any singularities which appear 
in the perturbation process. 

It is shown in Chawla (1976) that, for # = 0, the nonlinear changes in the applied 
axial magnetic field communicated to the container surface through the boundary 
layers are of order unity. Anticipating the other field functions to be of order E ,  we set 

F = Ef, G = €9, M = Em, N = c + m .  (3.1) 

If we now substitute (3.1) in (2.15) and seek a solution of the form 

we immediately find that c is an arbitrary function of <. The problem now is to solve 
for.&, 0, g(z, 61, m(z, 6) and n(z,O,  where 

f,, + 29 - 2 4  1 + 2 m )  nzz = s[ff - 2ff,, - g2 - 3fZz5 + 4 4  1 + 2ac) nz5 + 2h( 1 + 2cc) cc5 

- 2ha(n,2 + 2n, cc + c i  - 2nnz2 - m2)] 



with 

(3.7) 

(3.8) 

f(0,O) = 0, f,W, 0) + efg(0, 0 )  = 0, g(0,O) = 1, 

n,(O, 0) + cC(O, 0) + snC(O, 0) = 0, 

$[m,(O, 0) + q ( 0 , O ) l  = m(O,O), 

f,@, m) +d@, 00) = 0, g(00, 00) = 0, 

m(00,co) = 0, c(m) -tm(oo, 00) = 0. 1 
Substituting (3.2) in (3.3)-(3.6) and equating the coefficients of like powers of 6 

on both sides, we have 

f z,, + 2 8  - 2 4  1 + 2uc)  n;, = 0, 

& , - 2 f ~ - 2 h ( l + 2 u c ) m ~  = 0, 

(3.9a) 

(3.9b) 

m:, - (1 + 2cc )  gz = 0, (3.9c) 

n !&- ( l+2uc) f !  = 0, ( 3 . 9 4  

fizz + 291- 2h( 1 + 2uc)  ni, = f z - 2f”f2 - go2 - 2hu[nz2 - 2non!, + 2n: cC + ct - mO2] 

-3 f~2C+4h(1+2uc)n~t ;+2h( l+2ac)cCC,  (3.10a) 

g;, - 2fz’ - 2h( 1 + 2uc)  m; = 2ff + 2(gOfZ - fog;) - 2gf6 + 2 4  1 + 2ac)  mf 

- 4 h u ( m 0 n ~ + m o c C - n o m ~ ) ,  (3.10b) 

( 3 . 1 0 ~ )  mf, - ( I  + 2cc )  gt = ( 1  + 2ac)  gf - 2mfC + 2u(n0gz - f Om!), 

n;, - ( I  + 2uc)  f f = ( I  + 2uc) f - 2n% - cCK + 2cr(ny;  - f O n :  - f OcC), (3.10d) 

and 80 on. The solution of the set (3.9) is 

+* exp(-s*z) , 1 Ao exp ( - sz) AO* 
S S 

(3.1 1 a)  

I 
go = [Ao exp ( - sz) - Ao * exp ( - 8 *z ) ] ,  (3.1 1 b )  

exp(-sz)-:exp(-s*z) S 1 , (3.1 1 c )  
A0 * 

(3.1 1 d )  

where 
8 = [ 2 i  + 2 4  1 + 2uc)a]+, (3.12) 
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and ao, AO, c0 and do, like c, are arbitrary functions of 5. Also, an asterisk denotes the 
complex conjugate of the function under it. 

I n  writing the solution (3.11) care was taken that powers of z did not appear. 
Otherwise these would propagate into the higher approximations with larger values. 
For the same reason, we prevent terms independent of z from appearing on the right 
sides of (3.10b, d) .  This yields 

(3.13) 

(3.14) 

2az + 2hd! + 4Aa(cdg - docc) = 0, 

a& + 2a(ca& - aoc,) - cs, = 0. 

By eliminating gl, m1 and n1 from the set (3. lo), we avoid terms of the form 

zm exp ( -82) 
so that we must have 

(n 2 0) ,  

#A! + [aomo + ha( 1 + 2ac)  (4cm0 + 3cc + 2id0 + 2a0( 1 + 2ac))l  Ao  = 0, ( 3 . 1 5 ~ )  

Ao(0) = i. (3.156) 
with 

Moreover, it  is evident from ( 3 . 1 0 ~ )  that the function gl(z, 5)  must be of the form 

where 
(3.16) 

(3.17) 

For uniform validity of the second approximation, it now follows from (3.5) that 

bl+ 2a(cb! - aOd!) - dPs = 0. (3.18) 

The solution of the system of nonlinear differential equations (3.13), (3.14), (3.17) and 
(3.18), with appropriate boundary conditions, provides details about the physical 
structure of the outer layer whereas the solution of the set (3.15) gives minor modifi- 
cations in the thickness of the inner boundary layer. The solution (3.11) gives a unified 
representation (to order E )  of the flow and magnetic field functions in the whole of the 
flow region. Clearly the inner boundary layer (called the Ekman-Hartmann layer) 
results from the viscous-centrifugal-magnetic force balance near the rigid boundary. 
The thickness of this layer decreases with increasing A. The conducting boundary 
supports an azimuthal component of the magnetic field through the thickness of the 
Ekman-Hartmann layer. 

The dynamics of the outer region are crucial for determining the intensity of the 
hydromagnetic coupling between different regions of fluid flow and the interior of the 
container. Writing p = ao' + ib l  and q = cf + ido, where a prime denotes differentiation 
withrespect to 5, (3.13), (3.14), (3.17) and (3.18) are combined as 

s i p +  2hq' = 2aA(q2- 2Cp.7, 

q" - p f  = 2a(cp' - aoq'). 

(3.19 a)  

(3.19b) 

Also the boundary conditions (3.7) and (3.8) yield 

ik 
q(0 )  = ik$ + - 

4 0 )  ' 
(3 .20a)  

(3.20 b )  p(o0) = 0,  q ( m )  = 0,  c(c0) = 0, 
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6 

FIGURE 1. Variation of a = ao(co) with 4 for h = 0.2, 2, 5, 8, 16. 

where 
k = I + ~cTc(O), ~ ( 0 )  = [2i+ 2hk2]*. (3.21) 

It is evident from (3.19) that the induced electromagnetic body force dominates the 
nonlinear part of the inertia in the outer region. In  addition to providing the necessary 
balance between magnetic diffusion and magnetic convection, the outer region (called 
the magnetic diffusion region) serves to balance the induced electromagnetic body 
force and the induced centrifugal force. 

The set of equations (3.19)-(3.20), in the case 4 = 0, has been solved by Chawla 
(1976) using a method due to Fettis (1955). We omit details and give below only the 
values of u ( = aO(co)) and k (based on a four-term solution) for small and large values 
of the dimensionless parameter h (with 4 = O( 1 ) )  : 

3 + 84h + 

~2 + o(P)] ( A  small), 
- 77 - 2564 - 256$2 + 96$3 + 48$4 

384 
( 3 . 2 2 ~ )  U =  

A2+O(h3)] ( A  small), ( 3 . 2 3 ~ )  
59 + 1874 + 199r)2 + l q 3  + 

192 

(3.23b) 

ea gives the axial inflow a t  infinity whereas k gives the normal magnetic field induced 
within the conducting container. The azimuthal magnetic field supported over the 
conducting boundary is given by ek$. a and k are plotted us. 4 in figures 1 and 2 
respectively. 

The above analysis clearly establishes the existence of a double-layered structure 
governing the hydromagnetic flow induced by differential rotation. The function of 
the two layers is to provide a smooth transition in the applied magnetic field from its 
value outside the magnetic diffusion region (MDR) to that within the container. Any 
fluid flow in the MDR adjusts itself to the velocity of the rotating container across 
the Ekman-Hartmann layer (EHL). The thickness of the EHL is O(Z;'), where 

1, = [( 1 + h2k4)* + hk2]*, 
13 

(3.24) 
FLM 90 
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FIQURE 2. Variation of k with @ and $ for h = 0.2, 2, 5,  8,  15. 
@ 9 

and k varies from 4 to 1 as the strength of the applied magnetic field is increased. 
On the other hand, in general k decreases as the electrical conductivity of the container 
is increased. Thus the EHL will be thicker for a conducting boundary than that for 
a non-conducting one. 

The overall effect of the relative magnetic field strength on the structure of the 
two regions of fluid flow in their nonlinear forms has already been discussed in Chawla 
(1976). We therefore confine ourselves to considering the effect of the electrical 
conductivity of the container on the hydromagnetic interaction. 

It is evident from figure 1 that the inflow velocity a t  infinity increases with 4 
whereas the thickness of the outer layer (MDR), which is of order (1 + A 2 ) / 2 a m ,  
decreases as 4 is increased. It is therefore natural that the increased influx into the 
outer region is balanced by increased centrifugal action, so that the azimuthal velocity 
just outside the EHL increases with 4. This fact is clearly brought out in the next 
section. 

In addition to its ability to induce mass flux into the MDR, the EHL also generates 
electric current. The Hartmann current flowing into the outer region is given by 

~2 + o(A~)]  
1 + 4 4  + 100 + 1514 + 1 99#2 + 1 2 p  + 6#4 

- [ 1 + 2 q L s  192 
( A  small), (3 .25a)  1: (3 .253)  c[$ + (2A)-3 + O(A-%)] ( A  large). 

The axial current leaking into the conducting boundary, which is responsible for the 
toroidal magnetic field at  the interface, is ck$. A comparison between (3 .23 )  and (3 .25)  
shows that the EHL can support a stronger toroidal magnetic field than can the 
conducting boundary. In the MDR, the toroidal field stretches out into the axial field 
of strength H,, whereas within the container it stretches out, in the opposite sense, 
into an axial field of strength kH,. 

The diffusive effects of the finite resistivity of the fluid tend to spread the electric 
current pattern axially within the MDR and thicken the boundary layer. As the 
conductance of the boundary is increased, more and more current leaks into the 
boundary, ‘pulling’ the edge of the outer layer with it. For a sufficiently large value of 

sm(0) = 
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6 the spreading and pulling achieve a balance and give rise to a different type of outer 
boundary layer. This is discussed in the next section. 

4. Solution when 6 = O(e-f) 
We note from (3.24a) that, for 4 = O(B-*), a = O(s*), so that the thickness of the 

outer layer is of order s-*. The appropriate additional length scale in this case would 
be x = s*z. Writing 

(4.1) M = dm(2, x), N = c(x) + s h ( 2 ,  = Eg(z,x)yl x), 
$1 = d$, F = #(z, x), 

we assume a solution of the form 
m 

n= 0 
f = 2 &fn(x,z) etc. 

Proceeding as in the last section, we immediately find that 

f o  = ao(x), mo = do@), no = co(x), 

(4.3b) 
1 

go = bo(x) + [ A  exp ( -82) - A  * exp ( -s*z)J, 

1 A* exp(-s*z) , 

(4.3c) 

(4.3d) 

with 
8 = [2i + 2 4  1 + 2UC)2]*, 

where ao, bO, co, do, A ,  a', bl, dl  and c1 are arbitrary functions of x. For a uniformly 
valid solution, the functions ao, bo, co and do are given by 

2a: + 2hd$ - 4hu(d0c, - cd$) = 0, (4.4) 

a: - c,, + 2a(ca: - aoc,) = 0, 

2b0 = ZAG,, - ~ A U ( C :  - SCC,, - do2), 

(1 + 2uc) d$ - d:, - 2ua0d$ = 0. 

Expressions (4.1) with (4.2) and (4.3) provide a uniform representation (to order B )  

of the field functions for the entire region of hydromagnetic interaction. The physical 
characteristics of the inner EHL do not differ much from those already considered 
in the previous section. In order to derive the main features of the dynamics of the 
outer layer we set 

a o d  = a, uc = C,  d 0 d  = d ,  xu* = y, (4.8) 

q51u* = q+, p = a, + ibo, q = C, + id (4.9) 
in (4.4)-(4.7) and get 

zip + 2hq, = 2h(q2 - ZCq,), (4.10a) 

q,,-p, = 2(QP,-a¶,), (4.10 b)  
14-2 
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a(0) = 0, 

2dO) = $ P i k  + 4JO) - &(O) - kP(0) + kP*(O)I, ( 4 . 1 1 ~ )  

p(m) = 0, p(m) = 0, C(m) = 0. (4.11b) 

Again we use the Fettis method to solve the above set of equations. A four-term series 
solution yields the following values of a ( = a(co)), k ( = 1 + ZC(0)) and B (= d(0)) for 
small and large values of A (with $ = O( 1)) : 

a = 1‘” 1) ’ $ [ l - ( g + 2 $ ~ ) h f + ( ~ + 4 $ 2 , + 8 ~ ) h l + O ( A t ) ]  ( A  small), ( 4 . 1 2 ~ )  

)Ai[ l -  (8$1 A$)-l + O(A-l)] ( A  large), (4.1 2 b)  

( 4 . 1 3 ~ )  

1 + O(A-l) ( A  large), (4.13 b )  

+[ 1 - (1 + 2+;) At + ($ + $+; + 8+!) hl + O(A3)l ( 4.1 4 a)  

(4A’)-l [l - (8+1Af)-1+ O(A-l)] ( A  large), (4.14b) 

84h = A,, 1/12 = 8$@2,. (4.15) 

The solutions of the differential sets (3.19)-(3.20) and (4.10)-(4.11) between them 
cover the whole range of values of q5 from zero to infinity. The smooth transition from 
one solution to the other is evident from figure 2. We note that + ( = (Q/q)i ~ ~ ( 0 )  L/v,) 
is the ratio of the boundary conductance to the fluid conductance of one magnetic 
Ekman depth. For q5 = 0 (insulating boundary), the expressions (3.22) and (3.25) for 
a and k respectively reduce to the values obtained by Chawla (1976). For q5 = co 
(perfectly conducting container), we have 

( 4 . 1 6 ~ )  

$At + O( A-3) ( A  large), (4.16 b )  

( 2 / ~ , ) )  [I  - 3 ~ $  ++?&A~ + O ( A ~ ) ]  ( A  small), ( 4 . 1 7 ~ )  

(4A4)-‘+ O(A-P) ( A  large). 

k =  ( lWAi  + ;rhl + O(A*) ( A  small), 

( A  small), 
B = {  

where 

a. { t ( l  1~ 1 [I  - +*hl + O(A*)] ( A  small), 

l3={ (4.17b) 

The value of k remains the same as that given by (4.13). 
In  the limit q5 --f 00, the bounding surface acts as a perfect conductor and the magnetic 

field within the rigid container is ‘frozen in’. The semi-infinite extent of the fluid 
forces the magnetic field to rotate with it. The differential rotation steadily twists 
this magnetic field into the azimuthal direction, resulting in a toroidal field. Since 
the conductance of the fluid is finite, the differential rotation does not last beyond the 
double-decker structure. This acts to limit the flow of electric current, giving it a finite 
value. Loper (1970) assumes the outer region (MDR) to extend spatially to infinity, 
so that in his case the twisting continues without bound. Thus the approximate 
calculation by Loper predicts no finite limiting values for the toroidal field in the limit 

k measures the relative distortions in the applied magnetic field due to the 
stretching of the vortex lines across the two boundary layers. Compared with the 
basic applied magnetic field H, in the far field, the normal field induced within the 
conducting container is H, k .  We note from (3.26), (4.13) and figure 2 that substantial 
changes (of order unity) in the basic axial field over the entire width of the flow regime 

q5+O0. 
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can be brought about and sustained by even a small differential rotation (e+O). 
Though these changes are affected by the shearing of the fluid within the EHL, the 
bulk of the distortion takes place in the MDR. The relative distortion of the axial 
magnetic field is more pronounced for a conducting boundary. 

We have already observed that F(o0) is of order E for q5 = O( 1) whereas for 

q5 = O ( d )  

it is of order € 4 ;  the suction in the far field increases with q5 (see figure 3). Thus, for 
a given A,  the thickness 0[( 1 +A2)/20F(m)] of the MDR decreases from order E - ~  to 
order 6-4 as # increases. For sufficiently large A ,  the thickness of the outer region 
varies from O[A;/eR2(~7)4] to O[A;/R27e4] as q5 takes on values from zero to infinity, 
where A ,  is the Alfvh velocity (puHi/p)i. As already mentioned, the MDR primarily 
results from the outward magnetic diffusion and the inward magnetic convection. It 
also serves to balance the induced electromagnetic body force and the inertia of the 
induced rotation. The leakage of electric current into the conducting boundary tends 
to inhibit the axial growth of the magnetic diffusion on the one hand and increase the 
electromagnetic body force on the other. Thus the thickness and the physical char- 
acter of the MDR go on changing with A and d. For q5 = O(ed) ,  the MDR is independent 
of the viscosity of the fluid. 

It is natural that the increased inflow into the thinning (outer) layer is balanced by 
increased centrifugal action. For a highly conducting boundary, the tangential flow 
is no longer confined to the EHL. Additional layers of the conducting fluid, with 
tangential velocity of order e, come under the influence of differential rotation as q5 
increases. The source of the tangential flow (of order e) induced in the outer layer 
may be traced to the strong axial current (of order € 4 )  drawn out of the EHL. In the 
outer layer (thickness of order d),  this current turns and interacts with the axial 
field (of order unity) to generate a tangential electromagnetic body force (of order E ) .  

This force is sufficient to drive the edge of the EHL. For $ = O( l ) ,  the angular velocity 
of the bulk of the outer layer is given by R( 1 + sbO(O)), where 

1 - Z ( I +  z$;) A$ + O(A)]  ( A  small), ( 4 . 1 8 ~ )  

1 - (4~)--1A-4 + O(A-1) ( A  large). (4.1 8 b)  
bo(0) = 
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FIGURE 4. Variation of bO(0) and (p/2ep)t H, / rn  with $ for A = 0.2, 2, 5,  15. 

Further, for 4 = 00, 

( 2 ~ 1 4  [ I  - & + O ( A ) ]  ( A  small), 
1 + O(A-2) ( A  large). 

bo(0) = 
(4.19a) 

(4.19 b )  

The variation of bo(0) with II. is shown in figure 4. Evidently this case admits significant 
velocities within the MDR. In fact the MDR satisfies the various viscous boundary 
conditions [see (4.1 l)] and the EHL is no longer necessary for the transition. In the 
limit $+m, currents flowing radially inwards within the MDR interact with the 
applied axial magnetic field to produce a strong body force in the azimuthal direction, 
and for a sufficiently strong magnetic field the bulk of the fluid within the boundary 
layers rotates with the container as if in rigid-body rotation at an angular velocity 
R( l+s ) .  In view of the fact that the thickness of the outer region decreases as q4 
increases, we conclude that the spin-up time is decreased. We infer that, in general, 
the spin-up is accelerated by a conducting boundary. In contrast, the spin-up is 
slowed down by increasing the relative strength of the applied magnetic field (see 
Chawla 1976). 

The imposed vertical shear near the more rapidly rotating boundary tilts the axial 
lines of force. The electrically conducting boundary does not allow the field lines to 
slip over its surface. This results in the distortions of the basic field penetrating the 
container. Consequently a stronger axial Hartmann current leaks through the 
boundary as the conductance of the container is allowed to increase. Associated with 
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the axial current drawn into the MDR and the conducting boundary is a strong 
azimuthal perturbation component (of order €4) of the induced magnetic field. For 
sufficiently large A, the toroidal field permeating the EHL is given by 

pHo = -rQ(&ep)i [l-  (8ll/)-'A-&+ O(A4)] .  (4.20) 

The function p4Ho/(2pe)4rQ is plotted us. ll/ in figure 4 for various values of A. The 
evolution (spin-up) of the differentially rotating hydromagnetic flow over an electric- 
ally conducting boundary will, therefore, leave a residual azimuthal (toroidal) magnetic 
field of considerable strength through the thickness of the EHL. The electromagnetic 
body force associated with this field tends to spin the fluid faster. The viscosity of the 
fluid plays a negligible role in the spin-up process. The role of viscous stresses in 
controlling the fluid motion under hydromagnetic interaction is taken over by electro- 
magnetic coupling as the electrical conductivity of the container is increased. This 
can be ascertained by writing the values of the suction velocity in the far field, the 
thickness of the boundary layer, the axial current and other physical functions in 
their dimensional form. In all the functions the magnetic diffusivity of the fluid 
replaces the kinematic viscosity. 

5. Concluding remarks 
A number of dynamo models have been proposed to explain the solar cycle. All 

depend on the mechanism first put forward by Parker (1955), whereby the poloidal 
field is drawn out by differential rotation to give a toroidal field from which a poloidel 
field with the opposite sense is produced. It is generally assumed that there exists a 
large toroidal magnetic field within the earth's core associated with the hydromagnetic 
dynamo. The toroidal field is presumably generated from the main dipole field by 
differential rotation of the fluid within the core. For the core-mantle interface of the 
earth A = O ( l ) ,  e = 0(10-5), cr = 0(10-6) and q5 = 0(103) (see Hide & Roberts 1961). 
Since q5 is almost of order e-4, the results of the last section may be considered to have 
some relevance to modelling conditions near the poles within the earth's core. But the 
present analysis concerns a fluid of unbounded extent, both radially and axially. The 
effect of curvature and non-axisymmetry must be taken into account before quali- 
tative statements can be made about conditions prevailing within the earth's core. 

This work was completed while I was visiting the Institute of Applied Geophysics, 
Technical University, Darmstadt, as an Alexander von Humboldt Research Fellow, 
and my thanks are due to the A. v. H. Foundation, Germany. I am very grateful to 
Professor Dr H. Poeverlein for providing me with all the facilities to work. 
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